Unique Equilibrium States for Geodesic Flows on Flat Surfaces with Singularities

نویسندگان

چکیده

Abstract Consider a compact surface of genus $\geq 2$ equipped with metric that is flat everywhere except at finitely many cone points angles greater than $2\pi $. Following the technique in work Burns, Climenhaga, Fisher, and Thompson, we prove sufficiently regular potential functions have unique equilibrium states if singular set does not support full pressure. Moreover, show pressure gap holds for any locally constant on neighborhood set. Finally, establish corresponding $K$-property closed geodesics equidistribute.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Equilibrium States for Geodesic Flows in Nonpositive Curvature

We study geodesic flows on compact rank 1 manifolds and prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not carry full pressure. In dimension 2, this proves uniqueness for scalar multiples of the geometric potential on the interval (−∞, 1), and this is an optimal result. In higher dimensions, we obtain the same result on a neighborhood...

متن کامل

Integrable Geodesic Flows on Surfaces

We propose a new condition א which enables to get new results on integrable geodesic flows on closed surfaces. This paper has two parts. In the first, we strengthen Kozlov’s theorem on non-integrability on surfaces of higher genus. In the second, we study integrable geodesic flows on 2-torus. Our main result for 2-torus describes the phase portraits of integrable flows. We prove that they are e...

متن کامل

Unique Equilibrium States for Flows and Homeomorphisms with Non-uniform Structure

Using an approach due to Bowen, Franco showed that continuous expansive flows with specification have unique equilibrium states for potentials with the Bowen property. We show that this conclusion remains true using weaker non-uniform versions of specification, expansivity, and the Bowen property. We also establish a corresponding result for homeomorphisms. In the homeomorphism case, we obtain ...

متن کامل

Ergodic infinite group extensions of geodesic flows on translation surfaces

We show that generic infinite group extensions of geodesic flows on square tiled translation surfaces are ergodic in almost every direction, subject to certain natural constraints. Recently K. Fra̧czek and C. Ulcigrai have shown that certain concrete staircases, covers of square-tiled surfaces, are not ergodic in almost every direction. In contrast we show the almost sure ergodicity of other con...

متن کامل

Rational Singularities, with Applications to Algebraic Surfaces and Unique Factorization

§ o. Some terminology and notation . 196 198 I. Applications to the birational theory of surfaces · . . .. . .. .. . . . . .. . . . 199 § I. Birational behavior of rational singularities . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . 199 § 2. Resolution of singularities by quadratic transformations and normalization (method of Zariski) . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac247